

Introduction to KB CCL

for the Automotive Industry

Contents

Automotive Materials Trend

4 KB CCL in Automotive

(F) Materials Introduction

R&D Timetable

Anti-CAF Test,
TCT Test,
PCT Test,

6 Annex

Automotive Materials Trend

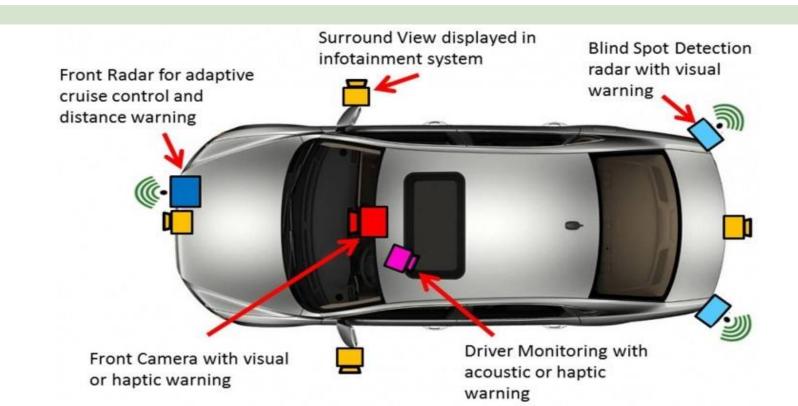
Automotive Materials Requirements

RF/Microwave Communications

New Safety Systems

Advanced DriverAssist Systems(ADAS)

RF/Microwave Communications


- High Frequency
- 24 GHz Radar
- -77 GHz Radar

New PCB Requirements

- Higher Layer Counts - HDI
- Thinner Dielectrics

New Materials Requirements

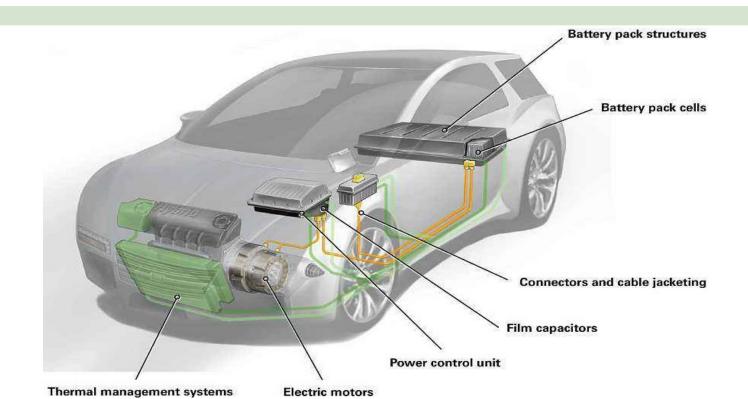
- Ultra-low Dk/Df
 - Low Z-CTE
 - Anti-CAF

Automotive Materials Requirements

Heavy Copper for Hybrid/Electric Vehicles

Hybrid/Electric VehiclesHigh Power Start

High Voltage and Current


- High voltage CAF
- 100/350/500v

Heavy Copper

- 6 oz (210um)
- 12 oz (400um)

New Materials Requirements

- High Thermal Reliability
 - Ultra Low CTE

Automotive Market Trend

Wider Operating Temperatures

Normal Test Standard

- (-25°C -125/140°C)
- 500/1000 Cycles

Latest Test Standard

- (-25°C -125/140°C)
- 2000/3000 Cycles

Wider Tempe. Range

- (-40°C -150/160°C)
- 1000/2000 Cycles

New Materials Requirements

- High Thermal Reliability
 - Ultra Low CTE

5 grades: Thermal Cycle

Position	Grade	Low Temperature	High Temperature
Within Cockpit	Α	-40°C	85°C
Base Shield Below	В	-40°C	125°C
Motor	С	-40°C	145°C
Driving Medium	D	-40°C	155°C
Inner Motor	С	-40°C	165°C

^{*} Thermal demands increase as they move from low temperature to high temperature.

PCB Types and Uses

Vehicle Devices	PCB Types
Dashboard, Speedometer, Air-Con	Single/Double –layer PCB
Car stereo, Audio, Monitor	Double-layer PCB Multi-layer PCB
Automotive communication devices, Wireless location applications, Security control system	Multi-layer PCB HDI PCB
Engine system, power transmission control system	Rigid-flex PCB Metal-core PCB
Vehicle power controller, navigation devices	Embedded PCB

CCL Application Requirement

Scenario

Application

Requirement!

CCL Material

Potential

Safety System

RF/Microwave Communication

High speed/ Low loss

Low Dk/DF

Engine / EV System

ECU, Transmission, Battery System

> High current/ High voltage

Heavy Copper

Lighting

LED Lighting

High thermal reliability

Metal Clad/ Normal FR-4

Infotainment

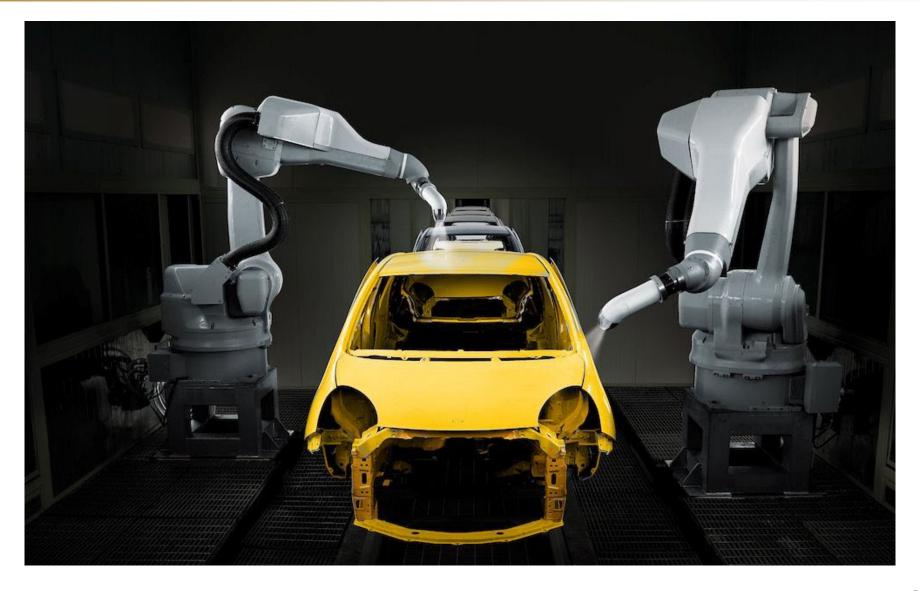
Infotainment, Wifi Module, Car Video

Miniaturization

Normal FR-4

Inner Decoration

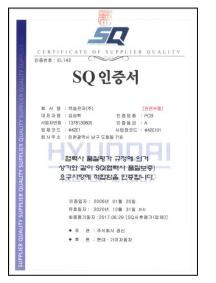
Functional control panel


Miniaturization

Normal FR-4

Private and Confidential

KB-(F) Series CCL on Automotive



Customers

	Automotive OEM	KB CCL (Approved / Being processed)						
\longrightarrow	C customer	•KB 6165F (Approved) •KB 6167F (Being processed)						
\longrightarrow	V customer	•KB 6165F (Approved) •KB 6167F (Being processed)						
$\longrightarrow \left[\rule{0mm}{2mm}\right]$	D customer	•KB 6165F (Approved) •KB 6167F (Approved)						
	H customer	•KB 6165F (Approved) •KB 6167F (Being processed)						
1	D customer	•KB 6164F (Approved) •KB 6165F (Approved)						
	S customer	• KB 6160 (Approved) •KB 6165F (Approved)						
★ ‡	R customer	• KB 6160 (Approved) •KB 6165F (Being processed)						
$\begin{array}{c} \longrightarrow \\ \\ \hline \\ MATRIX \end{array}$	Y customer	• KB 6160 (Approved) •KB 6165F (Approved)						
CIRCUIT BOARD MATERIALS								

Approval:

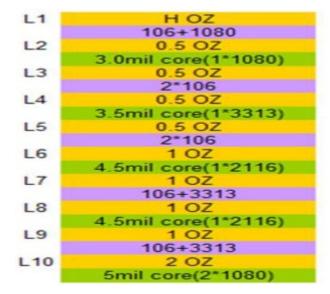
Automotive Customers

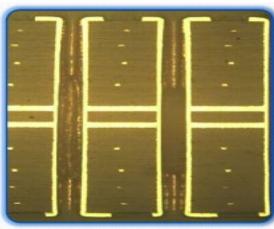
KB-(F) Series CCL for Automotive

	Norm	nal Tg	Mic	d Tg	High	n Tg
Product name	KB-6163F (new product)	KB-6164F	KB-6165F	KB-6165GC	KB-6167F	KB-6168
Properties 🛨	Phenolic Fr-4	Phenolic Fr-4	Phenolic Fr-4	HF Fr-4 (CTI600)	Phenolic Fr-4	Phenolic Fr-4
TG(°C, DSC)	>135	140	155	150	175	185
TD(°C)	>340	>340	>345	>370	>350	>360
Peeling strength 1oz (N/mm)	1.5	1.57	1.4	1.55	1.39	1.4
Z-Axis alpha 1 max (ppm/°C)	42	45	49	33	49	30
Z-Axis alpha 2 max (ppm/°C)	250	260	238	220	208	192
Z-Axis % (50-260°C) 🗡	3.5	3.6	2.9	3.0	2.5	2.1
T-260 (min)	>50	>60	>60	>50	>60	>60
T-288 (min)	>15	>20	>20	>50	>20	>20
Anti-caf 🜟	YES	YES	YES	YES	YES	YES
Suggested Layers	2-8	2-14	2-20	2-30	2-30	2-32

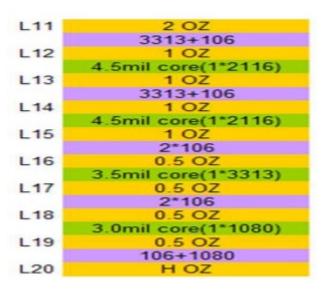
KB-6165F Introduction

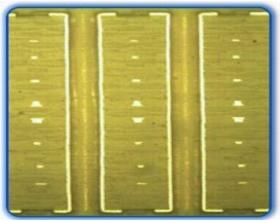
Material Features

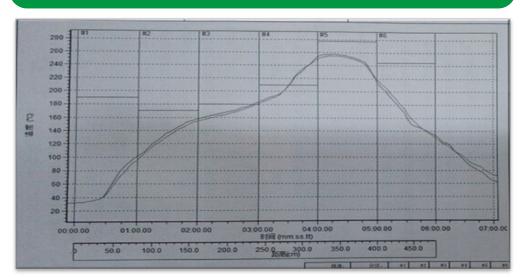

- •DSC TG>150 °C
- •High Td: -350 °C
- •Low Z-CTE
- Excellent CAF resistance

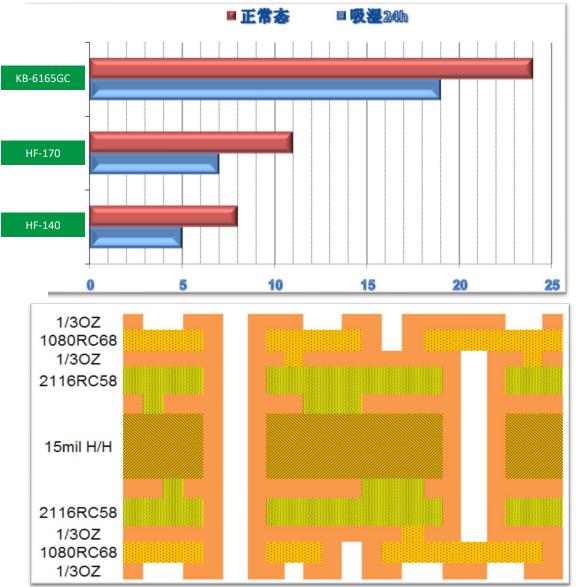

Application

- •HDI
- Automotive (Valeo & Denso Ten)
- Low end server device
- Multi-layer


PCB specification


- •Thickness of 20 layers PCB: 100mil
- •Minimum hole diameter: 8mil
- Distance between holes: pitch 0.7mm
- •Reflow condition: IR260*5 Cycle


8 mil via, 0.7mm pitch



KB-6165GC Introduction

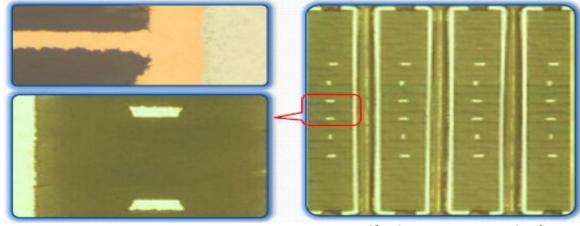
- •PCB Type: 4L
- •Heat Resistance Test:
- 1. Reflow with normal treatment
- 2. Reflow with 85°C/85RH treatment for 24 hours

The heat resistance of KB-6165GC is obviously better than HF-140 and HF-170. KB-6165GC can reach 24 times reflow with normal treatment.

KB-6167F Introduction

Material Features

- •DSC TG>170 °C
- •High Td: -350 °C
- •Low Z-CTE
- •Excellent CAF resistance


Application

- •HDI
- Automotive
- •High end server device
- •Multi-layer

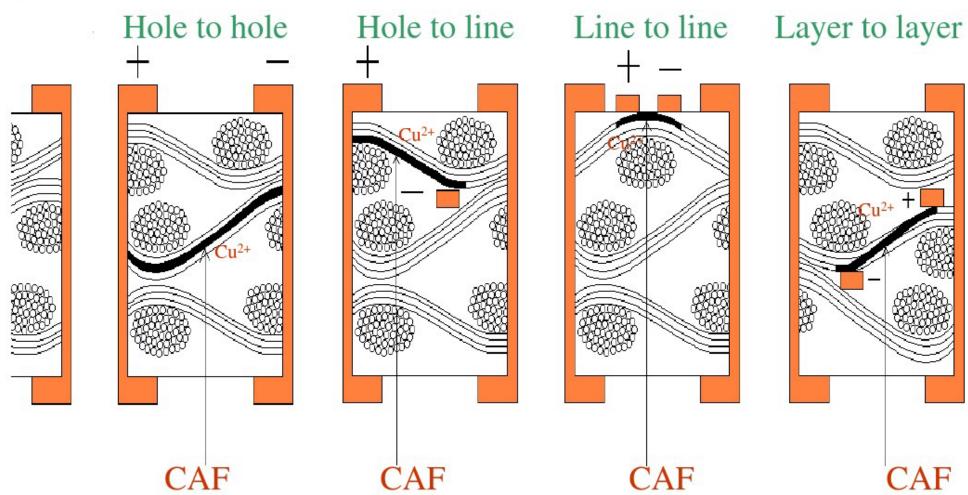
PCB specification

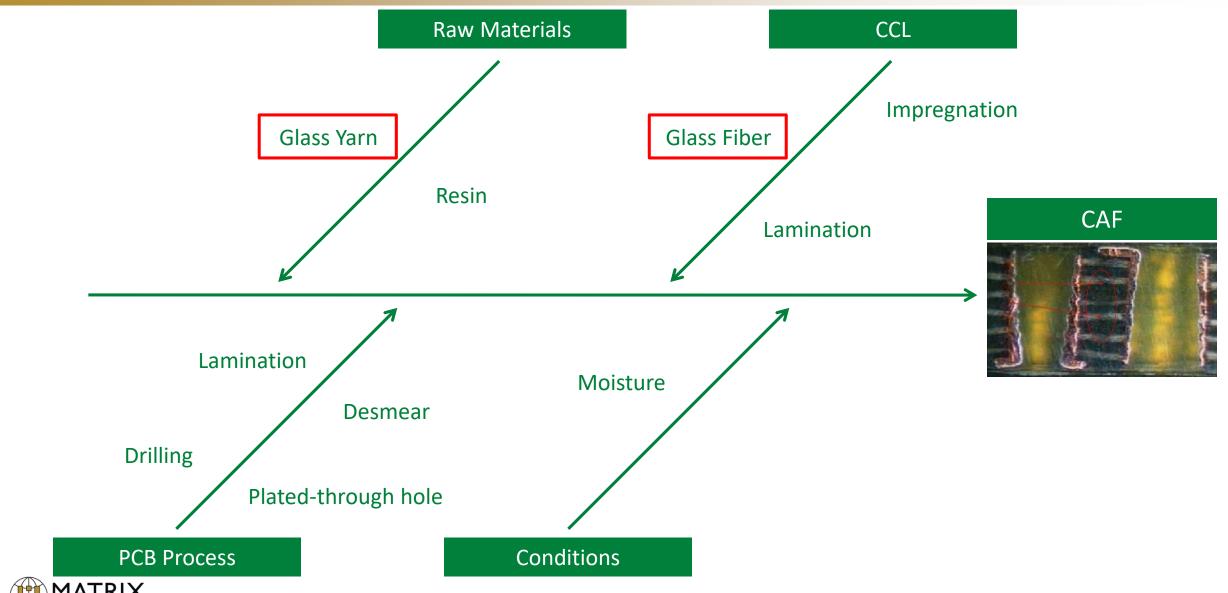
- •Thickness of 26 layers PCB: 130 mil
- •Minimum hole diameter: 8mil
- •Distance between holes: pitch 0.7mm
- •Reflow condition: IR260*5 Cycle
- •Thermal stress test: 108*6 cycle 288 °C floating

Lat	1/2 ox foil + plating		
	1080 RC 65%	L.14	1 ozCu
L.2	1/2 oz Cu		4.5 mil core 2116
	3 mil core 1080x1	L15	1 ozCu
L-3	1/2oz Cu		106+1080 RC:70%
	1020 RC 65%	L16	2 ozCu
L4	1/2 oz Cu		4.5 mil core 2116
	3 mil core 1080ml	L17	1 ozCu
L5	1/2og Cu		1080+106 RC:70%
	106x2 RC 75%	L18	1 oz Cu
L-6	1/2oz Cu		3 mai core 1080x1
	4 mil core 10mc2	L19	1 ozCu
1.7	1/2cc Cu		1080+106 RC:70%
	106+1080 RC:70%	L20	1/2 oz Cu
La	1 oz Cu		4 mil core 106x2
100	3 mil core 1080ml	L21	1/2 ez Cu
L9	1 oz Cu		106x2 R.C.75%
	106+1080 RC 70%	L22	1/2 oz Cu
L10	1 oz Cu		3 mil core 1080x1
	4.5 mil core 2116	L23	1/2 oz Cu
L1 1	2 oz Cu		1080 R.C.65%
	1080+106 RC:70%	L24	1/2 ez Cu
L12	1 oz Cu		3 mil core 1080x1
	4.5 mil core 2116	L25	1/2 oz Cu
LI3	1 oz Cu		1080 R.C:65%
	2116x2 RC:58%	L26	1/2 ox fol + plating

8 mil via, 0.7mm pitch

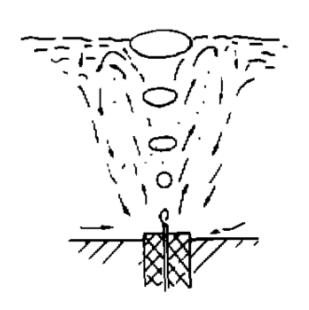
Material(s) Layout* Anti-CAF

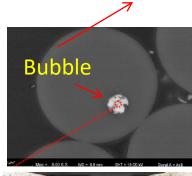

Anti-CAF, Thermal Shock, PCT



What is CAF?

CAF= Conductive Anodic Filament


CAF Influence Factors-CCL



CAF Influence Factors - CCL

Glass Yarn

Hollow Fiber

Improvement:

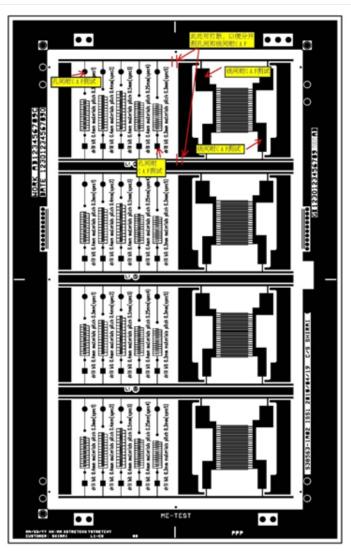
- 1. Increase the 'Glass Fluid' temperature in furnace, this helps to decrease the viscosity of 'Glass Fluid', which is effective to eject the bubbles.
- 2. Using 'Bubbling technology', increase the convection flow, this also helps to eject the bubbles.

Glass Fiber

2116 Glass Fiber

2116 Open-filament Glass Fiber

1080 Glass Fiber




1080 Open-filament Glass Fiber

A better Impregnation with resin.

Design Pattern

Test Judgement

Test Item	Test method	Test Conditions	Judgment					
	High temperature & high humidity	T:85°C, RH:85%, 100VDC	TH/TH Insulation Resistance ≥108 Ω L/L ≥5×108 Ω					
Anti-CAF	Micro-sections	Vertical and level section of hole observation after the experiment	No delamination shall be observed, no ions migration					
	Visual inspection	No measlings, dela	mination and copper peeling					
	Thermal shock, thermal cycling	T:60°C-125°C Dwell time: 30min/30min	After the holes feed through					
Rapid Temperature Change	Micro-sections	Micro-sections of copper hole after the experiment	No delamination shall be observed, no wickings					
	Visual inspection	No measlings, delamination and copper peeling						

Anti-CAF test follows: JIS 5012-9.4&9.5 Rapid Temperature Change: JIS 5012-9.2

Anti-CAF Test Result

	Mode	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	PA/PA
Time (hours)	Pitch	0.3mm	0.4mm	0.5mm	0.25mm	0.3mm	1
	Diameter	0.4mm	0.4mm	0.4mm	0.4mm	0.3mm	1
100		PASS	PASS	PASS	PASS	PASS	PASS
240		PASS	PASS	PASS	PASS	PASS	PASS
336		PASS	PASS	PASS	PASS	PASS	PASS
445		PASS	PASS	PASS	PASS	PASS	PASS
557		PASS	PASS	PASS	PASS	PASS	PASS
789		PASS	PASS	PASS	PASS	PASS	PASS
953		PASS	PASS	PASS	PASS	PASS	PASS
1057		PASS	PASS	PASS	PASS	PASS	PASS

Materials including: KB-6164F, KB-6165F, KB-6167F

KB-6164F Anti-CAF Test Result

S	Serial No	D.	1 F	Req: >	>0.1E9Ω	(L/L>	>0.5E99	Ω)	2 R	deq: >	0.1E9Ω	(L/L>	>0.5E90	2)		3 Req	: >0.1	IE9Ω (L/L>0.	5E9Ω)	
	Pe	riod	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	
Mat.	Pit	tch	0.3	0.4	0.5	0.25	0.3	1	0.3	0.4	0.5	0.25	0.3	1	0.3	0.4	0.5	0.25	0.3	1	Judge
	Dian	neter	0.4	0.4	0.4	0.4	0.3	1	0.4	0.4	0.4	0.4	0.3	1	0.4	0.4	0.4	0.4	0.3	1	
		Initial	99.73	90.88	88.65	18.65	135.6	135	90.73	97.83	84.75	18.77	120.8	120.4	98.93	87.78	97.4	74.38	84.82	109.5	Pass
		100	44.05	51.74	231.4	28.35	70.46	185.4	56.47	54.25	43.75	21.74	143.2	194.6	33.72	65.47	54.27	39.25	205.2	195.4	Pass
		240	30.15	37.88	73.87	18.95	64.16	58.37	40.27	105.7	105.7	27.76	72.74	67.15	43.94	70.38	138.4	57.74	102.4	91.99	Pass
#		336	40.29	54.82	982.52	21.62	77.46	64.97	37.81	75.81	64.72	17.73	52.44	70.64	42.25	60.25	64.59	25.54	51.52	72.87	Pass
KB-6164F	1	445	82.68	147.7	40.57	16.54	64.92	99.12	87.29	133.4	162.7	12.59	106.2	112.2	30.82	60.45	93.97	22.59	89.95	60.79	Pass
五		557	63.02	92.41	112.6	14.27	42.26	60.74	64.68	62.19	105.4	11.48	124.6	56.74	83.12	72.13	57.77	38.71	80.25	59.62	Pass
		789	60.12	92.42	102.24	22.47	93.87	58.91	123.7	47.13	46.43	16.93	106.7	69.12	77.63	151.6	101.7	64.15	34.47	54.49	Pass
		953	36.81	115.2	117.2	24.62	88.21	68.78	108.2	116.7	98.67	25.32	77.25	77.86	68.43	115.1	107.7	39.46	61.01	68.35	Pass
		1057	34.87	84.59	94.62	18.79	75.46	83.19	99.43	91.18	51.46	27.3	55.92	54.83	52.73	73.52	61.87	28.79	46.43	79.81	Pass

KB-6165F Anti-CAF Test Result

5	Serial No).	1 F	Req: >	∙0.1E9Ω	(L/L>	>0.5E90	2)	2 R	eq: >	·0.1E9Ω	(L/L>	>0.5E9Ω	2)	3 Req: >0.1E9Ω (L/L>0.5E9Ω						
	Pe	riod	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	
Mat.	Pi	tch	0.3	0.4	0.5	0.25	0.3	1	0.3	0.4	0.5	0.25	0.3	1	0.3	0.4	0.5	0.25	0.3	1	Judge
	Dian	neter	0.4	0.4	0.4	0.4	0.3	1	0.4	0.4	0.4	0.4	0.3	1	0.4	0.4	0.4	0.4	0.3	1	
		Initial	128.1	114.2	118.2	123.3	116.3	112.6	141.2	82.27	106.5	98.33	98.52	11.91	92.92	87.62	50.64	41.09	56.53	126.7	Pass
		100	115.6	107.7	131.7	102.1	102.4	35.76	110.4	102.3	121.4	106.7	127.6	39.74	83.94	139.7	133.6	43.09	31.56	34.04	Pass
		240	124.3	124.2	92.56	20.26	59.97	169.6	33.76	72.86	102.4	144.8	232.6	108.6	92.56	73.76	136.7	53.71	102.5	63.6	合格
5F		336	61.27	72.34	99.28	31.34	34.82	98.42	49.82	114.1	107.7	64.4	70.04	159.9	74.99	67.73	84.11	29.96	65.77	142.1	合格
KB-6165F	2	445	92.5	162.6	109.6	132.7	18.57	94.88	132.7	149.4	82.88	179.6	106.6	99.65	74.41	132.3	109.4	44.3	79.66	130.8	合格
五		557	17.86	174.6	30.84	17.62	75.46	113.4	110.8	96.47	102.4	93.02	105.6	34.26	30.53	165.7	103.1	29.11	29.66	94.45	合格
		789	75.52	97.92	25.23	46.62	94.47	92.01	77.67	41.59	131.1	116.2	165.7	77.56	98.65	123.4	135.7	63.23	57.23	77.67	合格
		953	33.89	65.12	58.12	58.13	35.75	87.78	32.15	36.18	103.7	99.16	118.1	116.1	27.76	65.61	75.48	31.57	28.86	115.4	合格
		1057	31.94	57.91	51.43	30.71	40.19	90.46	27.19	41.28	87.85	41.54	80.47	94.76	41.53	55.41	58.14	29.76	21.83	101.8	合格

KB-6167F Anti-CAF Test Result

S	Serial No).	1 F	Req: >	∙0.1E9Ω	(L/L>	>0.5E9Ω))	2 R	eq: >	0.1E9Ω	(L/L>	>0.5E9Ω	1)		3 Req	>0.1	Ε9Ω (Ι	_/L≥0.5	E9Ω)	
	Pe	riod	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	TH/TH	TH/TH	TH/TH	TH/TH	TH/TH	L/L	
Mat.	Pi	tch	0.3	0.4	0.5	0.25	0.3	1	0.3	0.4	0.5	0.25	0.3	1	0.3	0.4	0.5	0.25	0.3	1	Judge
	Dian	neter	0.4	0.4	0.4	0.4	0.3	1	0.4	0.4	0.4	0.4	0.3	1	0.4	0.4	0.4	0.4	0.3	1	
		Initial	98.42	47.43	118.2	101.7	92.86	87.68	95.57	85.72	107.5	88.82	73.86	96.86	72.75	66.45	88.45	87.10	73.82	115.3	Pass
		100	16.94	74.71	85.82	6.872	10.87	68.74	22.74	51.74	85.71	24.54	21.52	22.3	28.74	94.75	168.4	14.62	20.87	121.7	Pass
		240	36.23	30.75	56.74	7.892	12.55	58.86	28.39	65.75	30.92	13.52	11.85	68.21	17.86	17.82	19.27	8.905	13.21	78.92	Pass
ᄕ		336	69.16	135.2	97.87	9.618	13.58	92.25	32.13	74.71	84.97	13.78	16.18	59.48	20.91	79.85	90.58	10.88	14.6	163.4	Pass
KB-6165F	3	445	76.68	127.8	194.7	10.87	14.54	64.77	41.3	106.3	109.6	16.27	14.25	64.21	21.72	110.7	134.2	9.534	10.31	135.1	Pass
<u> </u>		557	17.25	111.1	90.26	7.835	13.48	81.25	53.08	37.11	84.71	13.41	13.48	88.34	23.28	67.72	69.35	8.911	8.694	60.29	Pass
		789	29.83	120.2	112.1	13.83	21.39	70.18	41.16	140.3	163.2	23.91	20.86	72.04	92.48	131.2	142.3	15.51	20.94	86.64	Pass
		953	26.87	30.98	75.95	17.15	24.16	57.74	70.94	118.2	139.2	26.99	21.61	55.47	16.02	32.59	92.42	4.357	21.57	43.74	Pass
		1057	18.76	24.73	57.82	16.79	17.51	64.35	61.04	29.48	54.79	20.71	23.48	61.42	24.09	37.81	53.29	6.713	17.49	53.84	Pass

KB-6164F Anti-CAF Test Result

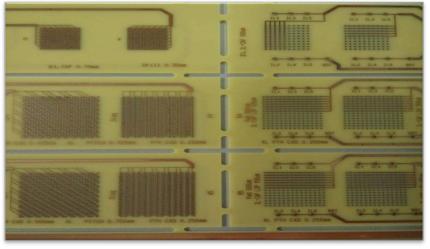
N. A. a. d. a. l.	Vertical Mi	cro-sections	Level Micro-sections					
Model	100 × (0.25mm)	100 × (0.40mm)	100 × (0.25mm)	100 × (0.40mm)				
	Glass fiber with slight wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings				
KB-6164F				00				

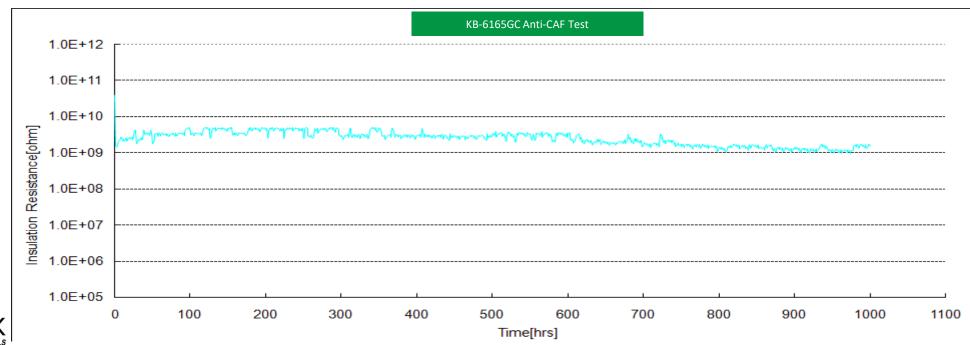
KB-6165F Anti-CAF Test Result

	Vertical M	icro-sections	Level Micro-sections					
Model	100 × (0.25mm)	100 × (0.40mm)	100 × (0.25mm)	100 × (0.40mm)				
	Glass fiber with slight wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings				
KB-6165F				00				

KB-6165GC Anti-CAF Test Result

Thickness: 1.5mm, 1/1. 7628x8


Hole diameter: 0.35mm


Distance (W-W) mm: 0.4mm

Condition: 85 ±2°C, 85%RH, 100VDC

Requirement: ≥100 Mohm

Method: IPC-TM-650, 2.6.25

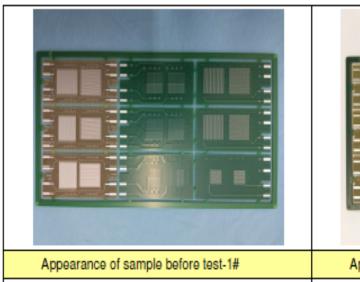
KB-6165GC Anti-CAF Test Result

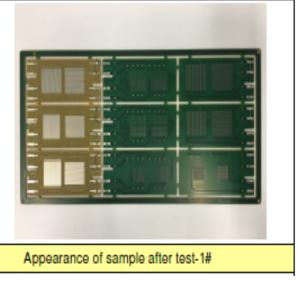
	Vertical Micro-sections		Level Micro-sections	
Model	100 × (0.25mm)	100 × (0.40mm)	100 × (0.25mm)	100 × (0.40mm)
	Glass fiber with slight wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings
KB-6165GC				00

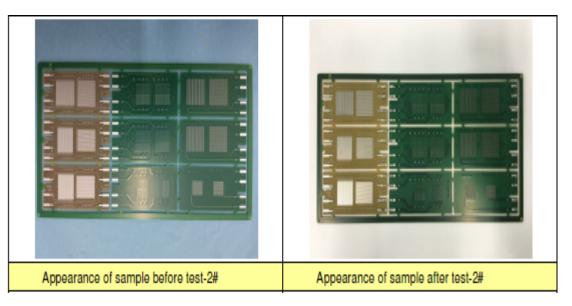
KB-6167F Anti-CAF Test Result

	Vertical Micro-sections		Level Micro-sections	
Model	100 × (0.25mm)	100 × (0.40mm)	100 × (0.25mm)	100 × (0.40mm)
	Glass fiber with slight wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings	Glass fiber no obvious wickings
KB-6167F				00

Material: KB-6165F

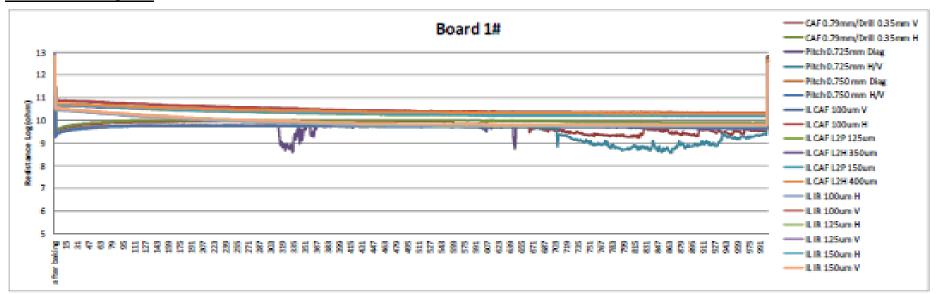

Layers: 6L


Quantity: 5 PCS


Method: IPC-TM-650, 2.6.25

Test Conflation

Temperature/Humidity:	85℃±2℃, RH85%+3%/-2%
Test Time:	96h without Bias, 1000h with Bias
Bias Voltage:	100±2VDC
Measurement Voltage:	100VDC
Measurement Time:	60s
Measurement Interval:	1h



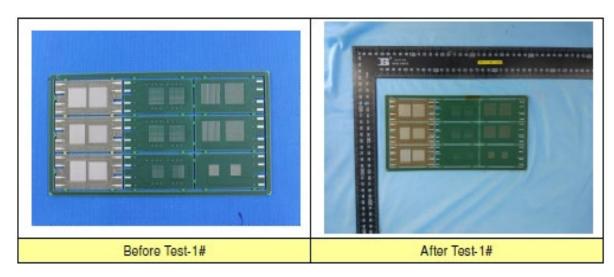
Test Result:

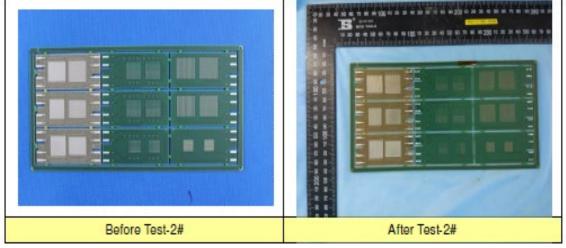
Summarize result:

Sample No.	Test Item	Test Result	Criteria	Conclusion	
	IR after precondition of baking	IR>100MΩ			
	IR_initial (96h THB/0h bias)	IR>100MΩ	IR>100MΩ and 1/100 of		
1# /2# /3#	IR interval(every 1h during	IR>100MΩ and 1/100	IR initial	Pass	
/4# /5#	1h-1000h bias)	of IR_initial	_		
	Recovery IR	IR>100MΩ and 1/100			
	(23°C/50%RH/24hrs)	of IR_initial			
	IR after baking(105°C/6h)	IR>500MΩ	IR>500MΩ		

IR Trend Graph:

Material: KB-6165F

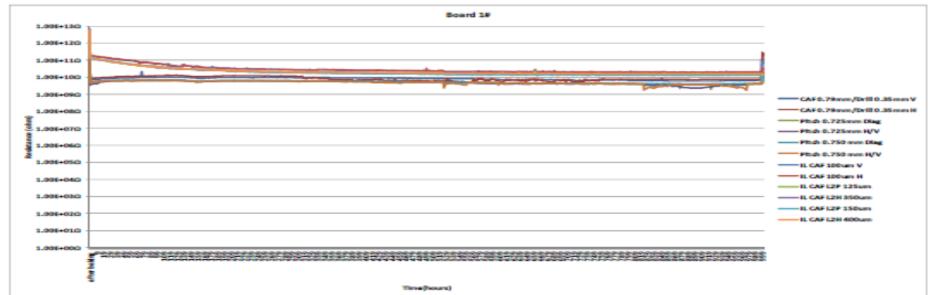

Layers: 8L


Quantity: 5 PCS

Method: IPC-TM-650, 2.6.25

Test Conflation

Temperature/Humidity:	85℃±2℃, RH85%+3%/-2%
Test Time:	96h without Bias, 1000h with Bias
Bias Voltage:	100±2VDC
Measurement Voltage:	100VDC
Measurement Time:	60s
Measurement Interval:	1h


Test Result:

Summarize result:

Sample No.	Test Item	Test Result	Criteria	Conclusion
	IR after precondition of baking	IR>100MΩ		
	IR_initial (96h THB/0h bias)	IR>100MΩ	IR>100MΩ and 1/100 of	
1# /2# /3#	IR interval(every 1h during	IR>100MΩ and 1/100	IR_initial	Pass
/4# /5#	1h-1000h bias)	of IR_initial		
	Recovery IR	IR>100MΩ and 1/100		
	(23°C/50%RH/24hrs)	of IR_initial		
	IR after baking(105°C/6h)	IR>500MΩ	IR>500MΩ	

IR Trend Graph:

TCT Micro-section

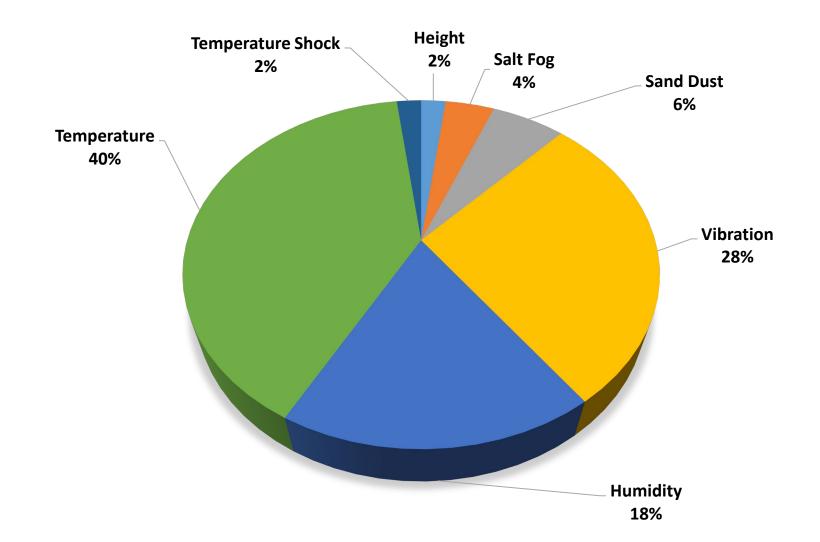
Item	Model	50 ×	Result
1	KB-6164F		
2	KB-6165F		No delamination, no copper peeling, no crack
3	KB-6167F		

Pressure Cooker Test (PCT)

Producer	Norma	l TG	Mid TG	High TG			
KB	KB-6160	KB-6164F	KB-6165F	KB-6167F			

Test method: IPC-TM-650 2.6.16

Test condition: 100% humidity & high pressure


Test process: PCT different time period (1H, 2H, 3H, 4H, 5H, 6H)

- Volume/surface resistivity
- Insulation resistance;
- Water Absorption;
- Tg/TD/CTE/T260/T288;

Why PCT Test?

Environmental Stress and Product Loss Efficacy

PCT Test-Normal TG

Test item	Sta	ndard	Test Method	КВ-6160	KB KB-6164F				
Dool Strongth (N/mm)	A ≥1.05		2.4.8	1.196/1.235	1.101/1.129				
Peel Strength (N/mm)	F	≥1.05	2.4.8	1.203/1.196	1.156/1.164				
Thermal Stress (Sec)	Float2	288°C≥60	2.4.13.1	>180	>180				
Tg (°C)		/	2.4.25	139.0/139.3	144.5/142.9				
TD (°C)		/	2.4.24.6	311.6	356.9				
CTE (ppm/°C)	/		2.4.24	52.5/307.8	31.3/266.2				
PTE(%)	/		2.4.24	4.21	3.61				
T260(min)	/		2.4.24.1	10.61	>60				
T288(min)	/		2.4.24.1	1.04	32.98				
Water Absorption (%)	/		2.6.2.1	0.06	0.04				
Tensile Strength	Fill	≥345	2.4.4	410.5	405.4				
(N/mm)	Warp	≥415	2.4.4	513.3	536.3				
CTI(V)	/		IEC60112	≥175	≥175				
Flammability	94	4 V-0	UL94	V-0	V-0				
Posistivity (NAC)	А	≥1*10 ⁵	UC C 6491	2.39*10 ⁹	1.16*10 ⁹				
Resistivity (MΩ)	D-100°C	≥1*10 ³	JIS C 6481	3.46*10 ⁶	6.40*10 ⁶				

PCT Test-Mid TG

Test item	Standa	rd	KB-6165F						
Dool Strongth (N/man)	А	≥1.05	1.144/1.202						
Peel Strength (N/mm)	Float288°C	≥1.05	1.195/1.203						
Thermal Stress (Sec)	Float288°C	2≥60	>180						
Tg (°C)	≥150°C		153.5/154.9						
TD (°C)	≥325°(350.4						
CTE (ppm/°C)	α1≤60/α2≤	≦300	47.4/257.1						
PTE(%)	≤3.5		3.13						
T260(min)	≥30		>60						
T288(min)	≥5		18.38						
Water Absorption (%)	≤0.5		0.05						
Tensile Strength	Fill	≥345	482.2						
(N/mm)	Warp	≥415	574.8						
CTI(V)	/		≥175						
Flammability	94 V-0		V-0						
Resistivity	Α	≥1*10 ⁵	1.14*10 ⁹						
(ΜΩ)	D-100°C	≥1*10 ³	4.59*10 ⁶						

PCT Test-High TG

Test item		Standard	KB-6167F						
Peel Strength	А	≥1.05	1.275/1.118						
(N/mm)	F	≥1.05	1.125/1.233						
Thermal Strength (Sec)	F	loat288°C≥60	>180						
Tg (°C)		≥170	176.5/177.2						
Td (°C)		≥340	353.2						
CTE (ppm/°C)	α	1≤60/α2≤300	48.2/218.3						
PTE (%)		≤3.0	2.43						
T260(min)		≥30	>60						
T288(min)		≥15	25.12						
Water Absorption (%)		≤0.5	0.07						
Tensile Strength	Fill	≥345	417.7						
(N/mm)	Warp	≥415	507.5						
CTI(V)		/	≥175						
Flammability		94 V-0	V-0						
Resistivity	А	≥1*10 ⁵	7.58*10 ⁸						
(ΜΩ)	D-100°C	≥1*10 ³	4.47*10 ⁶						

KB CCL in Automotive

Automotive camera, Multi purpose camera, Night view camera

KB Material Type: FR-4

Product Code: KB-6160, KB-6165F

KB Material Type: FR-4

Product Code: KB-6160, KB-6165F, KB-6167F

Engine ECU, Air bag, DC-DC Invertors, Hybrid Power Module, TCU, ABS

KB Material Type: FR-4

Product Code: FR-6165F, KB-6167F

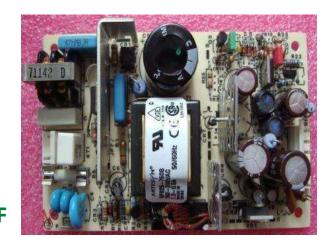
KB Material Type: FR-4 Product Code: KB-6165F,

KB-6167F,KB-6168

Automotive Lighting, LED Light

KB Material Type: FR-4 Product Code: KB-6160 Infotainment, Wifi Module, Car Video, Communication Module

KB Material Type: FR-4 Product Code: KB-6160, KB-6165F


Safety Systems in Automotive

Engine ECU

- High Reliability
- High Voltage

KB Material Type: FR-4
Product Code: KB-616XF

DC-DC Convertor

- High Reliability
- •High Power
- High Voltage

KB Material Type: FR-4
Product Code: KB-616XF

HEV DC-DC Convertor

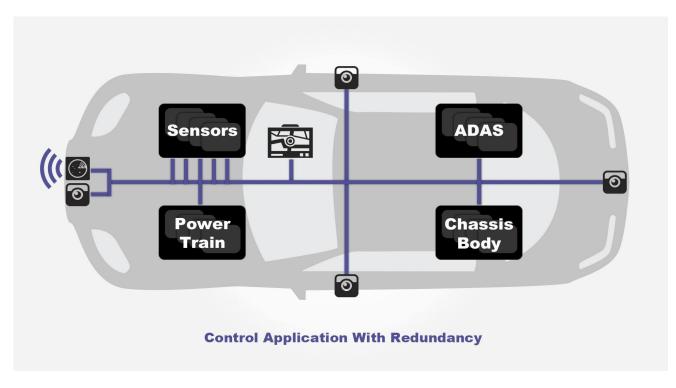
- •High Reliability
- High Voltage (350V)

KB Material Type: FR-4
Product Code: KB-616XF

Hybrid Power Module

- High Current (800A)
- •High Power Dissipation
- •High Voltage (650V)

KB Material Type: FR-4 Product Code: KB-616XF



Cameras and Sensors

Components

- •Ultrasonic sensor
- •Mid-range camera
- Near-range camera
- •Long range radar sensor

KB Material Type: FR-4
Product Code: KB-616XF

Demand for miniaturization and HDI will grow to meet performance and cost reduction requirements.

Automotive Lighting

- •High Thermal Conductivity
- High Reliability
- Cost effective

KB Material Type: CEM-1, CEM-3

Product Code: KB-6160, KB-5150H, KB-7150

Charging Systems

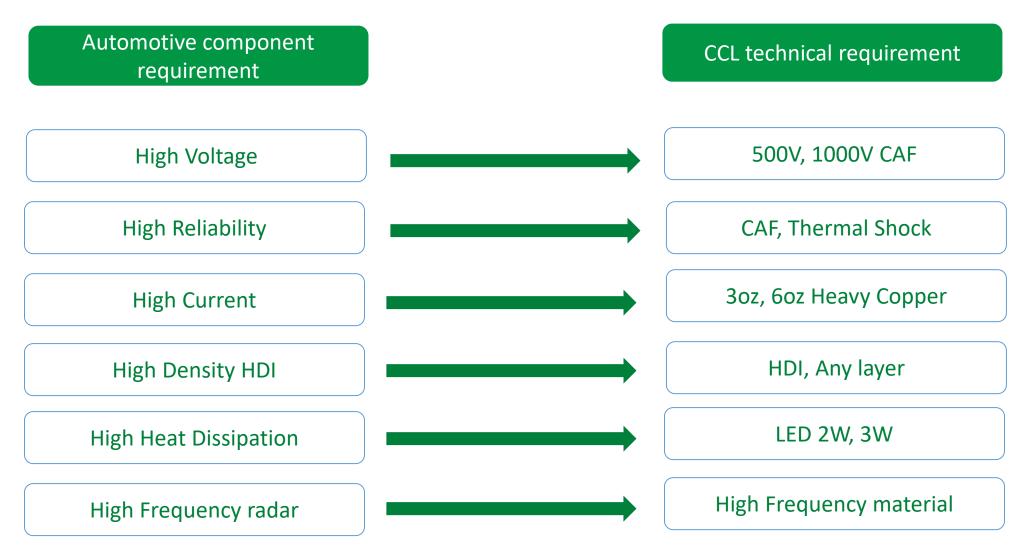
Onboard Charger (OBC)

- High effective battery charging
- Heavy copper design

KB Material Type: FR-4

Product Code: KB-616XF, KB-6168

KB 6oz 6165F got UL certified.



Electronic filter for OBC

- •For reliable fast charging on all power Grids
- Heavy copper design

Materials Requirements

Development Timetable

Categories		2016				2017			2018					20	19			20)20		Application	
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Application
Heavy Copper	6oz					Α	Α	В	В	В	С	С	D	D	D	D	D	D	D	D	D	High Current, Hybrid Power
	12oz									Α	Α	Α	В	В	С	С	С	D	D	D	D	Module, Convertor
	Low-Dk glass KB-(GLD) Series					Α	Α	В	В	В	В	С	С	D	D	D	D	D	D	D	D	Low DK/DF (3.8-4.1)
High Speed/Low Loss	FR-4+PPO						Α	Α	Α	А	В	В	В	В	С	С	D	D	D	D	D	PPO resin system (3.6-3.8)
	BT								Α	Α	Α	Α	В	В	В	С	С	D	D	D	D	BT resin system (3.0-3.4)
High TG	Tg-180 KB-6168					А	А	В	В	С	С	С	С	D	D	D	D	D	D	D	D	Wider Operating Temperatures
	Tg-200 KB-6200							Α	А	В	В	В	С	С	С	С	D	D	D	D	D	
	Tg-150 (HF) KB-6165GC						А	А	В	В	С	С	D	D	D	D	D	D	D	D	D	Halogen Free Demand, Environmental Requirement
Halogen-free	Tg-170 (HF) PIC-5157G								Α	А	В	В	С	С	С	D	D	D	D	D	D	
	Tg-180 (HF) PIC-5158G								Α	А	В	В	В	В	С	С	С	D	D	D	D	
Anti-CAF KB-(F) series	50V (0.3/0.4/0.5mm)	С	С	С	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Critical Anti CAE Boquiroment
	100V (0.35/0.4/0.5mm)	С	С	С	С	С	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Critical Anti-CAF Requirement
Metal-clad	Aluminum Base Laminates Copper Clad Laminates				А	А	А	В	В	В	В	С	С	С	С	С	D	D	D	D	D	Good Thermal Conductivity

A: Research B: Sample & Test C: Trial

Thank You

PHONE: 800-668-5447

EMAIL: info@matrixusa.us web: www.matrixusa.us